Иллюстрированный самоучитель по Matlab



              

И сингулярных чисел разреженных матриц


Применение функции eigs решает проблему собственных значений, состоящую в нахождении нетривиальных решений системы уравнений, которая может быть интерпретирована как алгебраический эквивалент системы обыкновенных дифференциальных уравнений в явной форме Коши: A*v=l*v.[

Усовершенствованный алгоритм eig позволяет использовать eig для расчета собственных значений и полных, и разреженных матриц, но для получения собственных векторов разреженных матриц по-прежнему желательно использовать именно eigs. — Примеч. ред.

] Вычисляются только отдельные выбранные собственные значения или собственные значения и собственные векторы:

eigs(A.B) решает проблему обобщенных собственных значений A*V = В* V*D. В должна быть симметрической (или эрмитовой) положительно определенной квадратной матрицей того же размера, что и A. eigs С А, []....) решает стандартную проблему собственных значений A*V = V*D.

[V,D] = eigs(A) или [V.O] = eigs('Afun',n) — возвращает собственные значения для первого входного аргумента — большой и разреженной квадратной матрицы размера п. Этот параметр может быть как квадратной матрицей, так и строкой, содержащей имя m-файла, который применяет линейный оператор к столбцам данной матрицы. Матрица А — действительная и несимметрическая. Y=Afun(X) должна возвращать Y=A*X.

В случае одного выходного параметра D — вектор, содержащий 6 самых больших собственных значений матрицы А. В случае двух выходных аргументов [V.D] = eigs(A) D — диагональная матрица размера 6x6, содержащая эти 6 самых больших собственных значений, и V — матрица, содержащая б столбцов, являющихся соответствующими собственными векторами. [V.D.flag] = eigs(A) возвращает флаг, равный 0, если все возвращенные собственные значения сходятся, и 1 в противном случае.

eigs(A.K) и eigs(A,B,K) возвращают не 6, а К самых больших собственных значений. eigs(A,K,sigma) Heigs(A,B,K.sigma) возвращают не 6, а К собственных значений, выбранных в зависимости от значения параметра sigma;

'lm' — самые большие (как и по умолчанию) по абсолютной величине;




Содержание  Назад  Вперед