ПиК Планирование и контроль концепция контроллинга



Взаимосвязи между целевыми показателями прибыли и рентабельности - часть 5


Максимум прибыли получается в точке касания кривой прибыли и линии параллельной оси абсцис. Максимум прибыли в обоих, случаях равен Gmax = ОН. Максимизирующий прибыль объем производства в обоих случаях равен х = OF. При таком объеме производства кривая предельной выручки пересекает кривую предельных издержек в точке G. Касательная в точке Е показывает одинаковый подъем кривых выручки и издержек.

Рис. 29. Связи между максимизацией прибыли, с одной стороны, и максимизацией рентабельности оборота, рентабельности издержек и экономичности, с другой стороны (первый случай: заданы предполагаемая функция цена - сбыт и линейная функция издержек; второй случай: заданы условия атомистической конкуренции и дегрессивно-прогрессивная функция издержек)

Для определения объема производства, максимизирующего рентабельность оборота, действует условие:

Поскольку

то отсюда следует:

или

т.е. максимальная рентабельность оборота достигается при j АВ. Этот случай показан на рис. 29, где 0В является максимизирующим рентапбельность объемом производства. При этом

Таким образом, область от точки 0 до точки В является областью взаимодополнения целей, а от точки В до точки F - областью конкуренции целей. Увеличение объема производства сверх значения в точке В ведет к росту прибыли, но одновременно уменьшает рентабельность оборота, рентабельность издержек и экономичность. Во втором случае, представленном на рис. 29, максимизирующий рентабельность объем производства совпадает с производственным оптимумом, под которым понимается минимум средних издержек. В первом случае он не задан, поэтому производственный оптимум предприятия лежит в области бесконечности.

Оба случая совместны, поскольку одна из двух функций Е(х) или Ко(х) линейна. Здесь особенно легко применим метод касательных, ибо касательные к кривым линейных функций сами описываются линейными функциями. Необходимо только продолжить кривую до пересечения с осью абсцис. Эти соотношения не выдерживаются в случае, когда обе функции нелинейны.




Содержание  Назад  Вперед