Матричная лаборатория MatLab

Свадебный банкет цены заказать недорогой свадебный банкет.


 

Полиномиальная регрессия для табличных данных

Рассмотрим самый характерный пример обработки данных, примерно представляющих некоторую (например, экспериментальную) зависимость вида у(х). Пусть она задана в табличной форме, причем колонки таблицы соответствуют элементам векторов X и Y одинакового размера в следующем примере:

» Х=[2,4,6,8,10,12,14];

» Y=[3,76,4,4,5,1,5,56,6,6,3,6,7];

» plot(X,Y,'o');

Напомним, что последняя команда строит график узловых точек кружками (без соединения их отрезками прямых).

Примечание

При проведении полиномиальной аппроксимации надо помнить, что максимальная степень полинома на 1 меньше числа точек, т. е. числа элементов в векторах X и Y.

Исполнив команду Tools > Basic Fitting, можно получить окно регрессии. В этом окне птичкой отмечены три вида полиномиальной регрессии — порядка 1 (linear — линейная), 2 (quadratic — квадратичная) и 3 (cubic — кубическая). Стоит отметить какой-либо вид регрессии, как соответствующая кривая функции регрессии (аппроксимации) появится в графическом окне.

Установив птичку у параметра Show equations (Показать уравнения), можно получить в графическом окне запись уравнений регрессии (аппроксимации). Наконец, можно сместить выводимую по умолчанию легенду в место, где она не закрывала бы другие детали графика.

Наконец, исполнив команду Tools > Data Statistics, можно получить окно с рядом статистических параметров данных, представленных векторами X и Y. Отметив птичкой тот или иной параметр в этом окне, можно наблюдать соответствующие построения на графике, например вертикалей с минимальным, средним и максимальных значением у и горизонталей с минимальным, средним и максимальным значением х.

Примечание

Безусловно, эта новинка понравится большинству пользователей системы MATLAB 6.0. Однако нельзя не отметить, что статистические данные более чем скупы.

 

Назад Начало Вперед