Математический анализ в Maple 9

         

На заметку


В выражении для F использован оператор композиции §. Если G и f — функциональные операторы (т.е. G(x) и f (x) являются функциями), то оператор L, определенный как L:=G§f, действует следующим образом: L(x)=G(f (х)).

Описанные выше функциональные операторы a[i] будут формировать коэффициенты разложения искомой функции в ряд по малому параметру, и именно их нужно определить в процессе решения.

Далее вводится переменная eq, значение которой формируется следующим образом. Сначала в исходном решаемом уравнении Eq все слагаемые переносятся в левую часть (команда lhs(Eq)-rhs(Eq)), а в полученном таким образом выражении функция (fnc) заменяется с помощью процедуры subs() разложением в ряд. Разложение в ряд получается в результате действия оператора F на аргумент функции fnc (переменная х, а результат равен F(x)). После этого выражение eq раскладывается в ряд (процедура series()) по малому параметру в окрестности нуля (это нужно сделать на тот случай, если в выражении присутствуют отличные от степенных функции малого параметра). Остаток ряда должен иметь порядок п+1. Далее выполняется преобразование в полиномиальный вид (процедура convert ()). Из этого выражения будут сформированы уравнения для определения коэффициентов a[i].

Правая часть уравнения inCon переносится влево, и это выражение присваивается переменной S. После этого в выражении S оператор у() заменяется оператором F(). Для того чтобы оператор F возымел действие, вызывается процедура value () и результат ее выполнения присваивается переменной S. Таким образом, переменная S является тем выражением, которое определяет начальное условие и в котором действие оператора у() заменено действием операторного ряда F().

Содержание  Назад  Вперед